排线厂家
免费服务热线

Free service

hotline

010-00000000
排线厂家
热门搜索:
成功案例
当前位置:首页 > 成功案例

就今日车身控制模块设计要求及安森美半导体解决方

发布时间:2021-09-01 22:32:00 阅读: 来源:排线厂家

车身控制模块设计要求及安森美半导体解决方案

随着人们对汽车的操控性及舒适性需求不断升高,汽车车身中的电子设备越来越多,如电动后视镜、中控门锁、玻璃升降器、车灯乃至其它更多的高级功能等。

电源要求及方案选择

典型车身控制模块(BCM)设计重要的一步是确定电源要求,以及选择合适的电源方案。一般而言,BCM要求的输入电压在-0.5 V至32 V之间,输出电压为5 V或3.3 V。值得一提的是,汽车内的用电设备越来越多,如果电池直接供电的设备静态电流不够低,而汽车连续停泊较长时间,车内蓄电池可能因为过度放电而使汽车无法重新启动,故BCM设计需要考虑静态电流。此外,汽车应用中可能会常常面对高温环境,所以要求电源提供过温保护。

适合于BCM的电源包括线性电源(或称线性稳压器)和开关电源(或称开关稳压器)。这两种电源各有优势,究竟选择何种电源,还要看具体应用。在车身控制模块的供电电源方面,中国市场上所售汽车中,轿车一般采用12 V电源,而卡车和客车一般采用24 V电源。在12 V电源BCM中,推荐采用安森美半导体的线性稳压器,如NCV4275A等,见图2。NCV4275A是一款带复位和延迟功能的5 V、3.3 V/450 mA低压降(LDO)线性稳压器,这款器件支持可编程微控制器复位,并提供多种特性,如过流保护、过温保护、短路保护等。此外,在下图中位置1处串联一个二极管(MRA4005),这线性电源能有效防止高达-42 V的反向电压;在位置2处并联一个瞬态电压抑制器(TVS)管,可以有效阻止高达 45 V的瞬态电源负载突降(load dump)高压脉冲及不稳定的电源杂波,符合12 V汽车电源系统的ISO 4.6过压测试规范。实际上,在汽车发动机启动瞬间就可能出现负载突降,从而导致电池电压升高至超过40 V。这些特性让NCV4275A非常适合汽车车身控制模块应用。

实际上,NCV4275A仅失效循环周次大于5X104的称为高周疲劳实验是安森美半导体针对汽车应用的宽范围线性稳压器中的一款,其它线性稳压器有如NCV8664/5、NCV4949、NCV8503/4/5/6、NCV4274A等。超低静态功耗的产品,静态电流低至30 μA以下,驱动电流范围在100 mA至450 mA之间。

24 V电源的BCM应用中,需要将24 V电压转换至5 V或3.3 V,如果采用线性稳压器,电源芯片本身就会有很高而PU硬泡1般为25~28;(4)本钱低廉的功率消耗,产生大量热量导致温度过高而烧坏芯片,所以我们需要采用开关稳压器,我们推荐采用安森美半导体系列用于汽车的开关稳压器,如NCV51411、NCV8842、NCV8843、NCV33063、NCV33163、NCV3063、NCV3163、LM25882.676、LM2575及NCV2574等。这些开关稳压器具有较高的效真空绝热板率,避免产生大量的放热,保护芯片,提升系统可靠性。这些汽车应用的开关稳压器驱动电流多数在0.5 A至1.5 A之间,有的达到2.5 A(NCV33163),开关频率在50 kHz至300 kHz之间。以NCV51441为例,这款器件使用V2控制架构,提供无可比拟的瞬态响应、极佳总体稳压精度及最简单的环路补偿。这款器件上的“BOOST”引脚支持“充当启动电路(Bootstrapped)”工作,将能效提升至最高;集成的同步电路支持并行电源工作或将噪声降至最低。

车身络要求及发展趋势

可以应用于汽车中的系统总线有多种,如控制器区域络(CAN)、本地互连络(LIN)及FelxRay等。这些总线的特点各不相同,表1比较了汽车应用中几种常见的系统总线,并列出了典型的安森美半导体总线收发器产品。

安森美半导体的总线收发器系列非常适合车身控制络应用要求。图3a)及b)分别显示了基于安森美半导体CAN收发器AMIS-42665及LIN收发器NCV7321的典型电路。值得一提的是,AMIS-42665提供小于的10 μA的极低静态电流。支持总线唤醒,共模电压范围-35 V至 35 V,可以承受额定 /-8 kV的静电放电(ESD)脉冲。NCV7321则支持-45 V至 45 V的电压范围,承受额定5 kV的ESD脉冲。这些器件均提供强大的保护功能。

在车身控制络应用中,需要尽可能地配合降低成本及空间要求,同时提升系统的稳定性和长期可靠性,故需要提升元器件的集成度。得益于近年来出现的混合信号工艺,如安森美半导体的Smart Power高压BCD工艺,高压模拟电路如今能够与低压电路集成起来,使更高集成度的系统芯片得以开特别合适于测定金属材料在极低温度状态下的抗冲击性能发和应用。如安森美半导体的NCV7440在同一颗芯片上集成了线性稳压器及CAN收发器,NCV7420则集成了线性稳压器及LIN收发器。这样的集成有效节省PCB板空间,可以给MCU单独供电,有效遏制其它模块对MCU电源的干扰。

安森美半导体身为全球领先的高性能、高可靠性硅解决方案供应商,更为汽车车身控制络应用推出一款超高集成度的芯片——NCV7462。这款芯片集成了线性稳压器、CAN收发器、LIN收发器、看门狗(WD)电路、低边驱动及高边驱动,将所需外部元件数量减至极少,仅占用极小的电路板空间,并帮助简化设计流程。

遥控上锁及开锁设计要求及解决方案

汽车中的遥控上锁及开锁的应用越来越普及。车身控制模块使用315 MHz(美国、日本)或433MHz(欧洲)频率,通过高频接收和发送来实现遥控上锁及开锁功能。这类应用中的设计难点在于设计阻抗匹配电路,从而使功率损耗降至最低。此类应用的通用要求包括低静态电流、提供睡眠模式、低发射功率、高接收灵敏度、低功耗及适宜的频率范围等。而安森美半导体的ON-53480高频收发器很好地满足这些设计要求,如静态电流低至小于1 A,带有唤醒及睡眠检测功能,信号电平仅为10 dBm,接收灵敏度更是低于-100 dBm,且工作电流仅为10 mA,频率范围为280至343 MHz。

板外大功率负载驱动及方案比较

车身控制模块电路板需要为板外的一些大功率负载供电,这些负载包括汽车内部照明(5 W及10 W)、单向电机和汽车喇叭等。一种可选的方案是采用板内继电器。继电器的线圈属于感性负载,而感性负载在启动时需要比维持正常工作所需电流大的启动电流,且感性负载在接通电源或断开电源的瞬间会产生反向电动势。要驱动继电器,可以采用安森美半导体的NUD3124、NUD3160或NCV7608等继电器驱动器。

表2:板外大功率负载驱动方案优缺点比较

另一种方案是采用“预驱动器 MOSFET”来驱动板外大功率负载,其中预驱动器可以采用安森美半导体的NCV7513A,这器件支持并行端口及SPI端口通信,可编程,提供失效模式检测及短路和断路诊断功能。

第三种方案是采用SmartFET驱动。这是带保护的MOSFET,在MOSFET基础上增加了多种功能,如过压钳位、ESD保护、过流保护、过温保护、反压保护及高边和低边驱动。典型器件如低边驱动的NCV8401/2/3,及用于高边驱动(内部集成了升压电路)的NCV8450和NCV8460等。这三种方案的优缺点见表2。

应用于BCM的其它方案

除了上述板外大功率负载,汽车应用中常见的电动后视镜方面,可以采用安森美半导体的NCV7703来驱动其中的转向电机。这器件提供3个半桥输出,输出电流为0.6 A,最高达1 A,并具备自诊断功能,提供低静态电流、SPI通信及低压/过压/过温保护等特性。

此外,车身控制模块需要采集车门、车锁、组合开关等数十个信号,往往需要扩展MCU的输入端口,这就需要并行端口转串行端口的逻辑转换芯片,常用的是安森美半导体的8位移位寄存器MC14021B。

安森美半导体还为组合尾灯提供不同的解决方案。如NCV7680是一款8通道低边恒流驱动器,能以脉宽调制(PWM)方式设定尾部行车/刹车电流输出,而NSI45xx则是新推出的恒流线性稳压器(CCR),基于安森美半导体待批专利的自偏置晶体管技扫除办法:用扳手将油泵后真个固定螺钉拧紧术,以低成本、强固等特点提供较高性能,着眼于替代一些汽车尾灯中使用的电阻型驱动器。

总结:

应用环境苛刻的车身控制模块(BCM)对元器件提出了更高的要求。本文探入探讨BCM设计在电源、车身络及板外大功率负载驱动等多个方面的要求,并比较分析了一些领域中不同方案的优劣势。安森美半导体针身为全球领先的高性能、高能效硅方案供应商,针对车身控制模块等汽车应用提供具有强固保护特性、高提高产品附加值可靠性、低静态电流的解决方案,如电源稳压器、总线收发器、高频收发器、继电器驱动器、预驱动器、电机驱动器、LED驱动器及MOSFET等,帮助设计人员为他们的BCM设计选择更佳的元器件方案,从而在市场上占据优势。


小ardanshaft(PTOshaft)
车辆中基本齿轮变速器的第1部分
高压电池ArduinoBMSV1.0
三维标志设计